焦爐煙氣脫硫脫硝凈化技術與工藝探討
介紹了焦爐煙道氣中SO2和NOx的形成機理,以及同時脫除的技術難點。分析了幾種可在大型焦爐煙道氣脫硫脫硝中采用的典型凈化技術路線,探討了不同焦爐煙道氣脫硫脫硝的工藝方案。
前言
煉焦過程是指煤在煉焦爐炭化室中在隔絕空氣的條件下進行高溫加熱,經(jīng)過一系列復雜的物理變化和化學反應過程生成氣(荒煤氣,水蒸汽)、液(焦油)、固(焦炭)等產(chǎn)物的過程。
荒煤氣經(jīng)過冷卻和化學產(chǎn)品分離,可以回收焦油、氨、萘、硫化氫、氰化氫以及粗苯等物質(zhì),最后得到凈煤氣(鋼鐵聯(lián)合企業(yè)也常用高爐煤氣或高焦混合煤氣)返回焦爐燃燒室燃燒,為煉焦過程提供熱量,在此燃燒過程中,產(chǎn)生大量的SO2和NOx。
二氧化硫、氮氧化物是污染大氣的主要有害物質(zhì),二者除了是酸雨的主要成因外,氮氧化物與碳氫化合物作用可形成光化學煙霧,二者同時也是PM2.5的前驅(qū)體,由其轉(zhuǎn)變而來的PM2.5占到空氣中PM2.5總量的40%以上,對環(huán)境和人體健康帶來嚴重影響。
2012年出臺的《煉焦化學工業(yè)污染物排放標準》規(guī)定在2015年后新建的煉焦爐氮氧化物排放濃度不得超過500mg/Nm3、SO2排放濃度不得超過50mg/Nm3,對于特別排放限值的地域范圍,氮氧化物排放濃度不得超過150mg/Nm3,SO2濃度必須控制在30mg/Nm3以下。現(xiàn)有及新建焦爐若不采取措施,煙氣均無法達標排放。在焦化市場疲軟萎靡的現(xiàn)狀下,因不達標而導致的罰款、限產(chǎn)及停產(chǎn)會影響企業(yè)生存。因此,焦化行業(yè)煙氣治理已經(jīng)迫在眉睫。
1焦爐煙道氣特點
為了解決焦爐煙道氣凈化問題,需對焦爐煙道氣特點進行分析:
1)焦化廠焦爐煙道氣參數(shù)千差萬別,影響焦爐煙道氣組分的因素包括:焦爐生產(chǎn)工藝、爐型、加熱燃料種類、焦爐操作制度、煉焦原料煤有機硫含量、焦爐竄漏等。
2)與電廠320℃~400℃煙氣溫度相比,焦爐煙道氣溫度相對較低,為180℃~300℃,多數(shù)在200℃~230℃。如果采用高爐煤氣加熱焦爐,則煙道廢氣溫度會更低(一般低于200℃)。
3)焦爐煙道氣中SO2含量范圍廣:60mg/m3~800mg/m3;NOx含量差別大:400mg/m3~1200mg/m3;含水量大不相同:5%~17.5%。
4)焦爐煙道氣組分隨焦爐液壓交換機的操作呈周期性波動,煙氣中SO2、NOx、氧含量的波峰和波谷差值較大。
5)焦爐煙囪必須始終處于熱備狀態(tài)。為保證煙氣凈化設備在突發(fā)情況下焦爐的正常生產(chǎn)且不產(chǎn)生嚴重的環(huán)境污染,與電廠煙氣相比,焦爐煙囪必須始終處于熱備狀態(tài),經(jīng)過脫硫脫硝后的煙道氣溫度必須高于煙氣露點溫度,且煙氣溫度不得低于130℃才可直接回到原煙囪,否則,焦爐煙道廢氣需經(jīng)過加熱才可回到原煙囪;對于溫度較低或含水量較高的煙氣,由于焦爐煙囪沒有采取防腐措施只能排放至大氣。
6)焦爐煙道氣組分復雜多變,含有硫化氫、一氧化碳、甲烷、焦油等。
7)SO2含量對低溫脫硝的影響。在SCR催化劑的作用下,焦爐煙氣中部分SO2會被轉(zhuǎn)化為SO3。在180℃~230℃區(qū)間內(nèi),氨氣與SO3反應極易生成硫酸氫銨。硫酸氫銨極易潮解,熔點溫度為147℃,沸點為350℃。該物質(zhì)非常黏稠且難以清除,粘附在催化劑表面,會嚴重影響催化劑使用效率。
2焦爐煙道氣脫硫脫硝控制技術
目前,在國內(nèi)外焦化領域,針對焦爐煙氣的脫硫脫硝技術尚處于研發(fā)階段,主要借鑒于工業(yè)化應用最廣泛的為電廠煙氣脫硫技術及電廠煙氣脫硝技術及燒結(jié)煙氣的脫硫技術,焦爐煙氣的凈化應在控制煙道氣源頭前提下,再確定下步的技術路線。
2.1NOx燃燒中控制技術
利用改善焦爐加熱制度控制焦爐溫度、以及使用廢氣循環(huán)結(jié)合焦爐分段加熱技術、改善焦爐爐體結(jié)構(gòu)等,可以控制NOx在焦爐煙道氣中的含量。
2.2控制SO2燃燒之前的工藝技術
在焦化廠煤氣凈化過程中,經(jīng)常通過控制焦煤含硫量、采用脫硫工藝對焦爐煤氣進行脫硫,以此降低H2S在焦爐煤氣中的含量;或使用高爐煤氣做燃料降低SO2含量。
2.3燃燒后SO2和NOx的凈化技術
如果在采用燃燒前控制技術后排放氣體中SO2和NOx的含量仍存超過了國家的標準,則必須使用燃燒后凈化技術。
現(xiàn)有煙氣脫硫技術大致包括濕法脫硫、半干法脫硫和干法脫硫。濕法煙氣脫硫技術是目前煙氣脫硫的主要技術,主要有石灰石∕石灰-石膏法、雙堿法、氨法等。半干法脫硫技術主要有旋轉(zhuǎn)噴霧干燥法、循環(huán)流化床等。近年活性炭脫硫脫硝一體化技術、專用脫硫劑等干法脫硫技術在燒結(jié)煙氣處理及電廠煙氣處理裝置上也得到較多應用。
現(xiàn)有NOx凈化技術可分為選擇性催化還原法(SCR)、選擇性非催化還原法、吸收法和固體吸附法等。SCR法采用氨作為還原劑,在催化劑的作用下,選擇性地將NOx還原成N2和H2O,還原反應在低溫下的反應速度很慢,為加快其反應速度加入催化劑。根據(jù)催化劑適用的煙氣溫度條件,將SCR工藝分為高溫(>450℃)、中溫(320℃~450℃)和低溫(120℃~320℃)工藝,SCR法是目前煙氣脫硝技術中脫硝效率最高、最為成熟的技術?;钚蕴糠摮齆Ox的過程類似于SCR反應過程,可認為是吸附與SCR過程相結(jié)合的一種方法,或低溫的SCR反應。吸收法是濕法脫硝,是指利用水或者水溶液來吸收廢氣中的NOx,根據(jù)吸收劑的不同分為水吸收、
酸吸收、堿吸收、氧化吸收、液相還原吸收、絡合吸收、微生物法等,有工業(yè)應用的主要為堿吸收法和酸吸收法。
3焦爐煙氣脫硫脫硝典型凈化工藝技術路線分析
3.1SCR法脫硝+雙堿煙氣脫硫工藝
從焦化煙囪出來的煙氣首先經(jīng)SCR反應器脫硝后進入空氣換熱器換熱,換熱后的煙氣進入余熱鍋爐,余熱回收后的煙氣溫度大約在160℃,再進入脫硫塔進行脫硫,脫硫后的煙氣經(jīng)脫硫塔頂除霧后排入大氣,換熱加溫后的空氣進入原煙囪進行煙囪熱備。
3.1.1SCR脫硝工藝原理
SCR技術是還原劑(NH3、尿素)在催化劑作用下,選擇性地與NOx反應生成N2和H2O,而不是被O2所氧化,故稱為“選擇性”。主要反應如下:
NO+NO2+2NH3→2N2+3H2O
4NO+4NH3+O2→4N2+6H2O
工藝流程:煙氣→氨水儲罐→氨水蒸發(fā)器→壓力變送器→噴氨格柵→SCR反應器→余熱鍋爐→脫硫塔→凈煙氣排放。
3.1.2鈣鈉雙堿法煙氣脫硫
鈣鈉雙堿法煙氣脫硫是先用可溶性的鈉堿溶液(Na2CO3或NaOH溶液)作為吸收劑吸收SO2,然后用石灰漿液作為第二堿對吸收液進行再生,再生后的吸收液循環(huán)利用。由于在吸收和再生處理中,使用了兩種不同類型的堿,故稱為雙堿法。
反應原理:反應分吸收反應和再生反應。吸收反應:
2NaOH+SO2→Na2SO3+H2O
Na2SO3+SO2+H2O→2NaHSO3
該過程中由于使用鈉堿作為吸收液,因此吸收系統(tǒng)中不會生成沉淀物。再生過程(用石灰漿液):
CaO+H2O→Ca(OH)2
2NaHSO3+Ca(OH)2→Na2SO3+CaSO3˙1/2H2O
再生后所得的NaOH液送回吸收系統(tǒng)使用,所得半水亞硫酸鈣壓縮空氣氧化后生成石膏(CaSO4˙2H2O)送脫水裝置處理。
3.1.3技術特點
該工藝采用溶解度大、活性高的鈉堿作為吸收劑,脫硫效率極高,通過塔外石灰再生,解決了石灰法易結(jié)垢易磨損的問題。脫硫液基本上是Na鹽及鈉堿的水溶液,PH值呈中性或弱堿性,在循環(huán)過程中對水泵、管道、設備腐蝕輕,便于設備運行與保養(yǎng)。塔內(nèi)吸收了SO2的脫硫液在塔外用廉價的石灰再生循環(huán)利用,實際消耗的脫硫劑為石灰,脫硫成本低。
3.2煙氣升溫后脫硫脫硝工藝
3.2.1工藝流程
焦爐煙道氣在總煙道調(diào)節(jié)翻板處引出,經(jīng)煙氣管道進入煤氣補燃爐,加熱后的煙氣依次進入SCR脫硝反應器、余熱回收裝置,然后煙氣經(jīng)過增壓風機進入脫硫系統(tǒng),脫除SO2后的凈煙氣經(jīng)過濕式電除塵后,通過塔頂煙囪排放,脫硫生成的副產(chǎn)品送到焦化回收車間,生產(chǎn)硫酸銨成品。
3.2.2技術特點
焦爐煙氣脫硝目前是新興行業(yè),且煙氣溫度比較低,由于應用于低溫場合的催化劑運行時間都不長,其安全運行、維護、再生均處于試用階段,遠不及中高溫催化劑的成熟經(jīng)驗,中高溫催化劑在國內(nèi)經(jīng)過十多年的實踐和驗證,其性能穩(wěn)定、價格低廉,維護使用安全可靠。在運行費用合理,廠區(qū)能夠調(diào)配焦爐煤氣,且蒸汽有需求的情況下,采用焦爐煤氣補燃升溫的中溫SCR脫硝技術,也是目前情況下一條可行的焦爐煙氣脫硝技術。
采用煤氣補燃升溫后的焦爐煙氣對催化劑的適應性得到極大的改善,能夠在高SO2含量、燃高硫煤、焦爐串漏、前端煤氣凈化異常等不利工況下穩(wěn)定運行。但由于采取煤氣補燃升溫、余熱回收、煙氣精除塵等技術,該工藝投資相對較高,另外氨法脫硫?qū)υO備的防腐性能要求較高。
3.3雙氨(銨)法脫硫脫硝工藝
3.3.1工藝原理
在脫硫脫硝一體化塔中,用濃氨水調(diào)節(jié)PH值的條件下,氨水中的游離氨與煙氣中的SO2反應,生成硫酸銨;同時在臭氧氧化作用下,煙氣中的NO部分氧化為NO2,NO、NO2以一定的比例與氨水中的游離氨生產(chǎn)硝酸銨。吸收用10%~14%濃氨水調(diào)節(jié)PH值,脫硫脫硝循環(huán)液經(jīng)氧化送硫銨系統(tǒng),生產(chǎn)硫酸銨、硝酸銨產(chǎn)品。
3.3.2技術特點
利用臭氧強氧化性將煙氣中難溶于水NO(約占95%)氧化為易溶于水并與水反應的高價氮氧化物(NO2、NO3、N2O3)等,采用噴淋洗滌法從煙氣中脫除。該方案脫硫脫硝一體塔分為脫硫脫硝一段、二段、逃逸氨捕集段、除霧段及附屬附件等,節(jié)省占地,減少了投資;脫硫脫硝劑為自產(chǎn)剩余氨水和濃氨水(10%~14%)為吸收劑,原材料供應可靠、方便、價格便宜,但設備的防腐性能要求較高,臭氧發(fā)生裝置復雜、電耗高。
3.4活性炭一體化煙氣凈化技術
脫硫脫硝一體化裝置的主要原料為專用活性炭,它是一種綜合強度(耐壓、耐磨損、耐沖擊)比常規(guī)活性炭高、比表面積比常規(guī)活性炭小的吸附材料。目前工業(yè)使用的專用活性炭常制作為圓柱狀。
3.4.1脫硫機理
活性炭脫硫工藝原理是基于SO2在活性炭表面的吸附和催化作用,煙氣中的SO2在120℃~160℃的溫度下,與煙氣中氧氣、水蒸汽發(fā)生反應為硫酸吸附在活性炭孔隙內(nèi)。
物理吸附:SO2→SO2(SO2吸附在活性炭微細孔中);
化學吸附:SO2+O2→SO3,
SO3+nH2O→H2SO4+(n-1)H2O;脫硝時噴NH3,向硫酸鹽轉(zhuǎn)化(靠NH3/SO2),
反應為:
H2SO4+NH3→NH4HSO4
NH4HSO4+NH3→(NH4)2SO4
3.4.2脫硝機理
噴氨氣進行脫硝,活性炭作為脫除NOx的載體和催化劑,NOx和NH3在溫度約107℃~167℃下,在焦基表面發(fā)生催化反應,將NOx分解為N2和H2O,吸附于活性炭上,主要反應式如下:
4NO+O2+4NH3→4N2+6H2ONH4HSO4+NH3→(NH4)2SO4
活性炭循環(huán)使用,吸附SO2后的活性炭輸送到再生塔,被加熱至400℃左右時,釋放出SO2。
3.4.3活性炭除塵原理
由于活性炭自身的吸附特性,活性炭吸附層相當于高效顆粒層過濾器,在慣性碰撞和攔截效應作用下,煙氣中的粉塵顆粒在床層內(nèi)部不同部位被活性炭的大孔吸附,完成煙氣除塵凈化過程?;钚蕴课降膲m和細小的活性炭從再生反應器里通過振動篩一同排出。
3.4.4技術特點
它的處理過程在一個反應器內(nèi)進行,能夠一步達到脫硫脫硝的處理效果,并可以附帶脫除二噁英、重金屬、塵等其他多種污染物;活性炭干法煙氣集成凈化技術生產(chǎn)的高濃度SO2氣體副產(chǎn)物,加工成多種硫酸鹽產(chǎn)品或制酸,回收的硫資源有較高的利用價值,回收的碎炭粉可作為燃料使用;主體工藝無廢水產(chǎn)生,無自產(chǎn)固體廢物;國內(nèi)已開發(fā)成功煙氣脫硫脫硝用活性炭,并批量生產(chǎn),其生產(chǎn)成本遠低于進口的活性炭?;钚蕴扛煞煔饧蓛艋夹g符合國家的環(huán)保政策,及未來煙氣中各類有害物質(zhì)治理的要求,但較大的投資和運行成本影響了其推廣應用。
3.5旋轉(zhuǎn)噴霧半干燥法(SDA)脫硫+除塵+SCR低溫脫硝熱解析一體化工藝
3.5.1工藝流程
焦爐煙氣被引風機抽取,進入SDA脫硫塔,煙氣從脫硫塔上部煙氣分配器進入塔體,煙氣中SO2與塔頂旋轉(zhuǎn)霧化器噴出的霧化的碳酸鈉漿液充分混合反應,生成Na2SO3和Na2SO4隨煙氣進入除塵脫硝反應器(反應器上部為脫硝段,下部為除塵段)。煙氣中的顆粒物被除塵濾袋過濾,經(jīng)壓縮空氣反吹后由輸灰系統(tǒng)收集,其中未反應的Na2CO3可循環(huán)利用。凈化后的煙氣進入SCR脫硝系統(tǒng),脫硝后煙氣經(jīng)焦爐煙囪達標排放。排煙溫度在170℃以上,煤氣加熱爐負責催化劑在線解析,約9~12個月解析一次。
3.5.2脫硫原理
將Na2CO3粉末加水配成Na2CO3飽和溶液與煙氣中的SO2進行反應,生成Na2SO3/Na2SO4,實現(xiàn)SO2脫除。
化學反應式如下:
Na2CO3+SO2→Na2SO3+CO2
2Na2SO3+O2→2Na2SO4
Na2CO3溶液根據(jù)原煙氣SO2濃度由溶液泵定量送入置于脫硫塔頂部的溶液頂罐,頂罐內(nèi)的溶液自流入脫硫塔頂部旋轉(zhuǎn)霧化器霧化成50μm~80μm的霧滴,與脫硫塔內(nèi)煙氣接觸迅速完成吸收SO2等酸性氣體的過程。由于Na2CO3溶液為極細小的霧滴,增大了脫硫劑與SO2接觸的比表面積,反應極其迅速且有極高的脫除SO2效率,脫硫效率在90%以上。由于噴入塔內(nèi)的Na2CO3溶液是極細的霧滴,在200℃溫度條件下,完成反應后的脫硫產(chǎn)物為極細的干燥顆粒。
蒸發(fā)后未反應的Na2CO3顆粒物通過后續(xù)除塵布袋過濾收集,重新配入脫硫溶液制備系統(tǒng),使脫硫劑得到充分利用。最后脫硫反應生成的Na2SO3、Na2SO4及小部分未反應的Na2CO3干粉通過除塵器過濾收集后集中處置。
3.5.3技術特點
在煙氣脫硝之前設置半干法脫硫,將煙氣中的SO2含量脫除至30mg/m3以下,降低了生成黏稠的硫酸氫銨對催化劑的影響,保證后續(xù)的高效脫硝;核心設備旋轉(zhuǎn)霧化器的霧化粒徑為50μm~80μm,大大增加了霧滴與煙氣接觸面積,提高吸收效率;實現(xiàn)煙氣脫硫除塵、脫硝、脫硝催化劑現(xiàn)場熱解析再生一體化,減少占地面積;系統(tǒng)溫降小(<30℃),回送煙氣溫度大于150℃,滿足煙囪熱備要求。整個系統(tǒng)干況運行,不存在結(jié)露腐蝕的危險,煙囪無須做特殊內(nèi)防腐處理。缺點是采用Na2CO3作為脫硫劑,副產(chǎn)物硫酸鈉屬于危廢需要專門處置,Na2CO3成本也較高,同時投資與運行成本也相對較高。
3.6移動層式干法脫硫+SCR法低溫脫硝技術
移動床干法脫硫技術原理是在100℃~300℃的溫度范圍內(nèi),脫硫劑中的Ca(OH)2粒子和煙氣中的SOx進行氣固反應,達到脫硫目的。
3.6.1移動層式干法脫硫工藝流程
脫硫劑由輸送機輸送至脫硫塔頂部,并通過調(diào)節(jié)脫硫塔上下兩端的旋轉(zhuǎn)控制閥使其在脫硫塔內(nèi)從上往下緩慢移動。焦爐煙氣通過水平管道由脫硫塔的中部進入,穿過脫硫劑,脫硫劑中的Ca(OH)2與SO2發(fā)生化學反應,實現(xiàn)煙氣凈化的目的,然后煙氣從脫硫塔出口排出。脫硫塔中的脫硫劑從上往下移動,即保持脫硫塔上部的脫硫劑為最新的,經(jīng)使用一段時間后去往脫硫塔下部。反應后產(chǎn)物(主要是CaSO4和CaSO3)通過塔底脫硫劑排出閥排出,如圖2所示。
該干法脫硫裝置,脫硫劑粒子在向下流經(jīng)移動床過程中,煙氣中的SO2會被吸收,同時飛灰會被移動媒體捕捉。同半干法相比較,由于不使用水,因此溫度不會下降,也不會產(chǎn)生大量灰塵,所以脫硫后可直接進入脫硝裝置,不需再進行除塵,簡化了流程,也節(jié)省了除塵部分的設備投資和后期運行成本。
該工藝采用的脫硫劑在100℃~300℃溫度范圍內(nèi),可良好地吸收SO2。在煙氣中有NOx、O2、H2O共存情況下,SO2的吸收顯著加快。
3.6.2低溫SCR脫硝裝置技術
采用日本日揮35孔或40孔蜂窩狀催化劑,單位體積活性高,低溫狀態(tài)下活性高,可以實現(xiàn)催化劑用量減少和反應器的緊湊化,在日本廣泛應用。
3.6.3技術特點
專用干法脫硫劑,不使用水,無溫降,不影響后續(xù)脫硝裝置的效率,脫硫塔兼具除塵效果,可降低飛灰濃度,有利于提高脫硝效果;脫硫后的脫硫劑,是含有較多石膏的中性硬化物,易進行填埋處理,也可用在污泥處理和脫臭方面。該工藝無需設置除塵設施,投資相對其它半干法/干法較低,但使用專用脫硫劑及脫硝劑提高了運行成本。
4結(jié)論
1)焦爐煙氣屬低溫、低NOx濃度、低SO2含量、含氧、微塵煙氣,NOx和SO2波動較大,各企業(yè)焦爐爐型、爐齡、燃料結(jié)構(gòu)不同,所在地環(huán)保標準也不同,需考慮不同的工藝技術對自身煙氣的適應性,兼顧投資運行成本等;
2)采用濕法脫硫方案脫硫效率高,外排煙氣含濕量高,可能產(chǎn)生有腐蝕性冷凝水不能直接回原煙囪,需考慮原煙囪的熱備。在未設精除霧裝置情況時外排煙氣也可能會產(chǎn)生較嚴重的拖尾現(xiàn)象。氨法脫硫由于腐蝕強,設備制作時必須考慮特殊防腐或采用專用防腐材料;
3)選擇性催化還原法(SCR)是最為成熟的脫硝技術,但適應較低溫度尤其是燃料為高爐煤氣下的低溫高效催化劑有待進一步開發(fā)。氨吸收濕法脫硝可以和氨法脫硫?qū)崿F(xiàn)一體化,但因臭氧發(fā)生器運行成本高,技術成熟度需進一步驗證;
4)干法/半干法不會在煙囪周圍產(chǎn)生煙囪雨,并可以避免煙氣溫度低于酸露點而引起的煙囪腐蝕,由于煙氣降溫低可直接回煙囪,同時也解決煙囪熱備問題。在SO2含量不高尤其是燃料為高爐煙氣時,應該優(yōu)先考慮。